Enables calls to the Google Cloud's Vertex AI API to access Large Language Models.

This entrypoint and class are intended to be used in web environments like Edge functions where you do not have access to the file system. It supports passing service account credentials directly as a "GOOGLE_VERTEX_AI_WEB_CREDENTIALS" environment variable or directly as "authOptions.credentials".

Hierarchy

  • BaseGoogleVertexAI<WebGoogleAuthOptions>
    • GoogleVertexAI

Constructors

Properties

CallOptions: BaseLLMCallOptions
ParsedCallOptions: Omit<BaseLLMCallOptions, never>
caller: AsyncCaller

The async caller should be used by subclasses to make any async calls, which will thus benefit from the concurrency and retry logic.

lc_kwargs: SerializedFields
lc_namespace: string[] = ...
lc_serializable: boolean = true
maxOutputTokens: number = 1024
model: string = "text-bison"
temperature: number = 0.7
topK: number = 40
topP: number = 0.8
verbose: boolean

Whether to print out response text.

callbacks?: Callbacks
metadata?: Record<string, unknown>
tags?: string[]
connection: GoogleVertexAILLMConnection<BaseLanguageModelCallOptions, GoogleVertexAILLMInstance, TextPrediction, WebGoogleAuthOptions>
lc_runnable: boolean = true
streamedConnection: GoogleVertexAILLMConnection<BaseLanguageModelCallOptions, GoogleVertexAILLMInstance, TextPrediction, WebGoogleAuthOptions>

Accessors

  • get lc_attributes(): undefined | {
        [key: string]: undefined;
    }
  • Returns undefined | {
        [key: string]: undefined;
    }

Methods

  • Internal method that handles batching and configuration for a runnable It takes a function, input values, and optional configuration, and returns a promise that resolves to the output values.

    Type Parameters

    Parameters

    • func: ((inputs, options?, runManagers?, batchOptions?) => Promise<(string | Error)[]>)

      The function to be executed for each input value.

    • inputs: T[]
    • Optional options: Partial<BaseLLMCallOptions & {
          runType?: string;
      }> | Partial<BaseLLMCallOptions & {
          runType?: string;
      }>[]
    • Optional batchOptions: RunnableBatchOptions

    Returns Promise<(string | Error)[]>

    A promise that resolves to the output values.

  • Get the identifying parameters of the LLM.

    Returns Record<string, any>

  • Convenience wrapper for generate that takes in a single string prompt and returns a single string output.

    Parameters

    Returns Promise<string>

  • Extracts the prediction from the API response.

    Parameters

    • result: GoogleVertexAILLMResponse<TextPrediction>

      The API response from which to extract the prediction.

    Returns TextPrediction

    A TextPrediction object representing the extracted prediction.

  • Formats the input instance for the Google Vertex AI model based on the model type (text or code).

    Parameters

    • prompt: string

      Prompt to be formatted as an instance.

    Returns GoogleVertexAILLMInstance

    A GoogleVertexAILLMInstance object representing the formatted instance.

  • Formats the input instance as a code instance for the Google Vertex AI model.

    Parameters

    • prompt: string

      Prompt to be formatted as a code instance.

    Returns GoogleVertexAILLMInstance

    A GoogleVertexAILLMInstance object representing the formatted code instance.

  • Formats the input instance as a text instance for the Google Vertex AI model.

    Parameters

    • prompt: string

      Prompt to be formatted as a text instance.

    Returns GoogleVertexAILLMInstance

    A GoogleVertexAILLMInstance object representing the formatted text instance.

  • This method takes prompt values, options, and callbacks, and generates a result based on the prompts.

    Parameters

    Returns Promise<LLMResult>

    An LLMResult based on the prompts.

  • Get the parameters used to invoke the model

    Parameters

    Returns any

  • This method takes an input and options, and returns a string. It converts the input to a prompt value and generates a result based on the prompt.

    Parameters

    Returns Promise<string>

    A string result based on the prompt.

  • This method is similar to call, but it's used for making predictions based on the input text.

    Parameters

    • text: string

      Input text for the prediction.

    • Optional options: string[] | BaseLLMCallOptions

      Options for the LLM call.

    • Optional callbacks: Callbacks

      Callbacks for the LLM call.

    Returns Promise<string>

    A prediction based on the input text.

  • This method takes a list of messages, options, and callbacks, and returns a predicted message.

    Parameters

    • messages: BaseMessage[]

      A list of messages for the prediction.

    • Optional options: string[] | BaseLLMCallOptions

      Options for the LLM call.

    • Optional callbacks: Callbacks

      Callbacks for the LLM call.

    Returns Promise<BaseMessage>

    A predicted message based on the list of messages.

  • Stream all output from a runnable, as reported to the callback system. This includes all inner runs of LLMs, Retrievers, Tools, etc. Output is streamed as Log objects, which include a list of jsonpatch ops that describe how the state of the run has changed in each step, and the final state of the run. The jsonpatch ops can be applied in order to construct state.

    Parameters

    Returns AsyncGenerator<RunLogPatch, any, unknown>

  • Default implementation of transform, which buffers input and then calls stream. Subclasses should override this method if they can start producing output while input is still being generated.

    Parameters

    Returns AsyncGenerator<string, any, unknown>

  • Type Parameters

    Parameters

    • func: ((input) => Promise<string>) | ((input, config?, runManager?) => Promise<string>)
    • input: T
    • Optional options: Partial<BaseLLMCallOptions> & {
          runType?: string;
      }

    Returns Promise<string>

  • Create a unique cache key for a specific call to a specific language model.

    Parameters

    Returns string

    A unique cache key.

  • Helper method to transform an Iterator of Input values into an Iterator of Output values, with callbacks. Use this to implement stream() or transform() in Runnable subclasses.

    Type Parameters

    Parameters

    • inputGenerator: AsyncGenerator<I, any, unknown>
    • transformer: ((generator, runManager?, options?) => AsyncGenerator<O, any, unknown>)
        • (generator, runManager?, options?): AsyncGenerator<O, any, unknown>
        • Parameters

          Returns AsyncGenerator<O, any, unknown>

    • Optional options: BaseLLMCallOptions & {
          runType?: string;
      }

    Returns AsyncGenerator<O, any, unknown>

Generated using TypeDoc